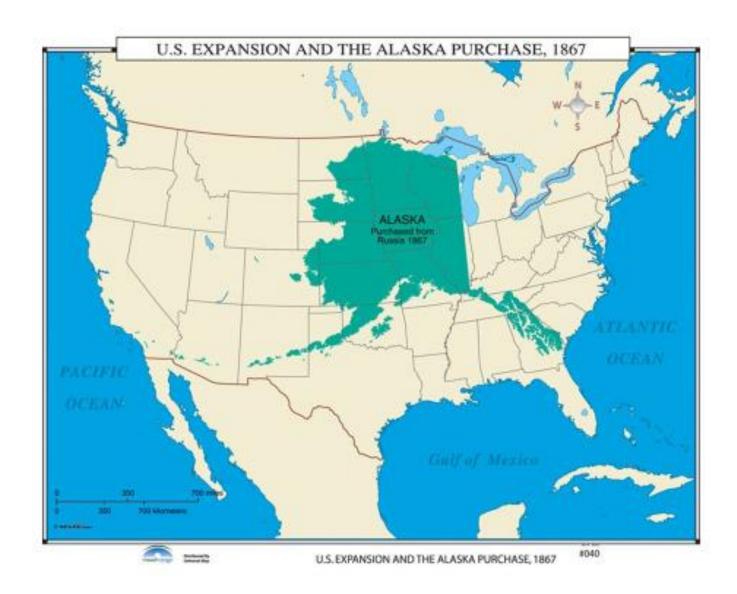
Agronomy program in Alaska and soil health research

A presentation made for Alberta Soil Science Workshop, Feb 21-23, 2023

Mingchu Zhang, Ph.D. professor of agronomy/soil science


Department of Natural Resources and Environment, Institute of Agriculture, Natural Resources, and Extension University of Alaska Fairbanks

Acknowledgements

- Thanks for the invitation of Alberta Soil Science Workshop.
- Thanks for my U of A schoolmates for their friendship and encouragement in my career.
- Thanks for the friends from Alberta Agriculture, Food and Rural Development. I really enjoyed my time working there.

Outline of the presentation

- Brief outline the agronomy/soil research activities in Alaska
- Modeling on small grain yield under climate change
- Report and discuss the soil health research in Alaska
 - Research on land use change
 - Problems encountered
 - Some considerations on soil health research in Alaska

Agronomy and soil research activities in Alaska

- Alaska current land for agriculture, total land suitable for agriculture.
 - 2237.9 hectares of small grain and most of them are feed barley with a crop value of \$951,000
 - <u>16 million hectares of land suitable for agriculture</u>, a potential breadbasket for USA under climate change scenario, range land 714,377 acres.
- Cereal crop variety test;
- Cover crop experiment;
- Soil health research;
- Cut flower nutrient test.

May 24, 2022

Winter cover crop trial (started in summer 2022)

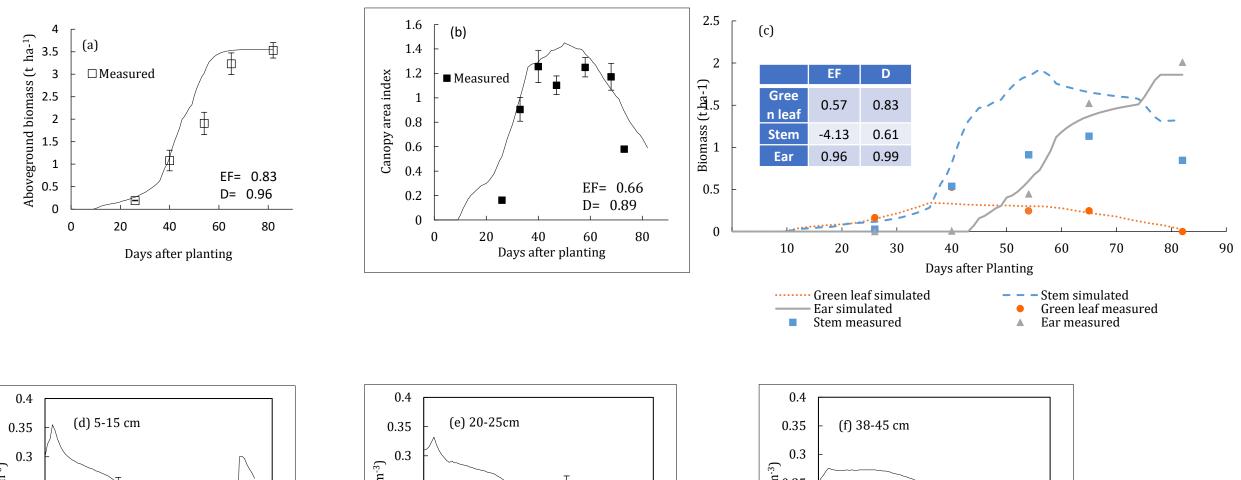
	Border S	trip - Wooding Bai	rley	Border Strip - V	rley Border Strip	Border Strip - Wooding Barley			
	101	Early Giant	201	17 MDCC-Hard	301	17 MDCC-Soft		401	Dixie
Clover	102	17 MDCC-Soft	202	Early Giant	302	Early Giant		402	17 MDCC-Soft
	103	17 MDCC-Hard	203	19 MDCC	303	Dixie		403	19 MDCC
	104	19 MDCC	204	Dixie	304	17 MDCC-Hard		404	17 MDCC-Hard
	105	Dixie	205	17 MDCC-Soft	305	19 MDCC		405	Early Giant
Winter	101	Whistler	201	Amigo	301	WyoWinter		401	Windham
peas	102	WyoWinter	202	Lcicle	302	Whistler		402	Podell
	103	Amigo	203	Whistler	303	Windham		403	Amigo
	104	Lcicle	204	Blaze	304	Amigo		404	WyoWinter
	105	Windham	205	Podell	305	Blaze		405	Lcicle
	106	Blaze	206	WyoWinter	306	Podell		406	Whistler
	107	Podell	207	Windham	307	Lcicle		407	Blaze
Border Strip - Wooding Barley				Border Strip - Wooding Barley Border Strip - Wooding Barley					

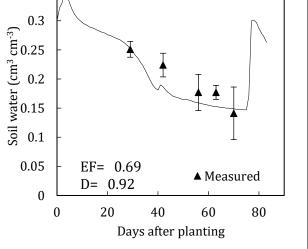
Taken in the University Farm on July 7, 2021

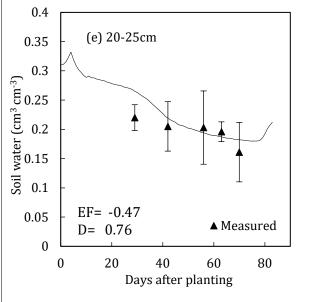
Source: Thomas J. Story / Sunset Publishing

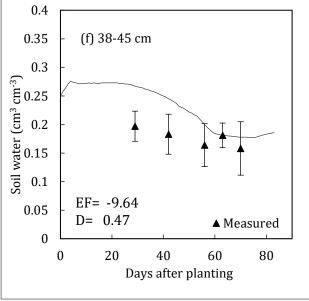
Source: Alaska peony growers' Association.

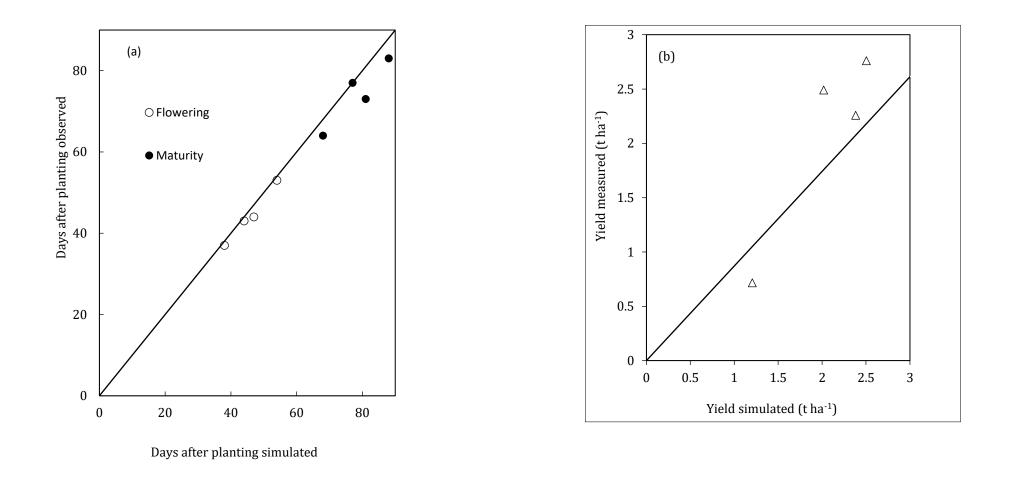
Two major researches

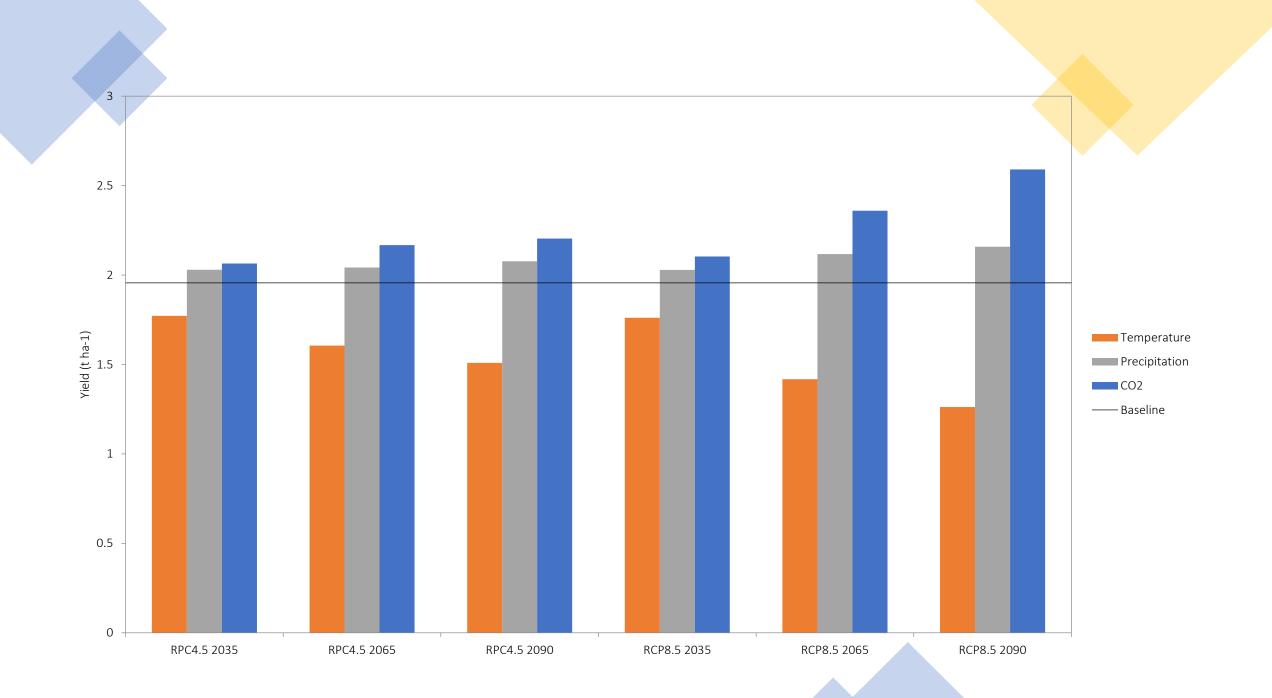

- Small grain evaluation and modeling
 - Passed 20+ years field research accumulated large database.
 - It allows modeling (simulation or machine learning) of the data under environment changes.
- Soil health research
 - Early land use change on soil health.
 - Current exploration for new approaches.


Modeling of cereal crop on a data set from 20+ years for growth stages and climate impact


- Projections of spring wheat growth in Alaska: Opportunity and adaptions in a changing climate. Climate Service 22 (2021) 100235.
- Forecasting flowering and maturity times of barley using six machine learning algorithms. J. of Agricultural Science and Technology, B 9 (2019) 373-391
- Growing season and phenological stages of small grain crops in response to climate change in Alaska. American Journal of Climate Change, 2021 10:490-511
- Impact of heading shift of barley cultivars on the weather patterns around heading and yield in Alaska. Atmosphere 2022, 13:310
- Temperature and precipitation changes impact the yield of small grain cultivars from 1978 to 2018 in Fairbanks and Delta Junction, Alaska. Arctic, Antarctic, and Alpine Research 2022, 54:386-395.


For DSSAT (Decision Support System for Agrotechnology Transfer) simulation


- DSSAT: a site-specific model simulating Plant, Environment and Management (PxExM) conditions under a changing driver, CO₂, temperature, and precipitation. There are four steps:
 - Field data collection (2018) with spring wheat "Ingal", data collected including: growth stages, biomass yield, and grain yield, weather data etc.
 - Model calibration, using 2015-2018 data.
 - Model validation, using data of 2011-2014, and model test using qualifiers, RMSE, normalized RMSE, d-index, and model efficiency,.
 - Model application: RCP 4.5, and RCP 8.5 for the time periods of 2020 2049, 2050 – 2079, and 2080 – 2099.



A correlation of measured and simulated (a) growth phases, and (b) yield of Ingal grown in Fairbanks during 2011-2014

Validation statistics for flowering day after planting (dap) maturity dap and yield (kg/ha) of Ingal grown In Fairbanks during 2011-2014

	Mean Observed	Mean Simulated	%RMSE	D-index	EF
Flowering	44	46	3.9	0.98	0.91
Maturity	74	78	6.9	0.88	0.45
Yield	2056	2028	17.9	0.92	0.78

What we found

- Simulated changes in temperature, especially minimum temperature strongly impact on spring wheat yield
- Current spring wheat cultivar "Ingal" yield in the simulated climate scenarios (RCP 4.5, RCP 8.5) for 2035 s and 2065 s decreased 1 to 4% due to high growing season GDD, and fast growth of "Ingal".
- Required extensive field measurement in order to run DSSAT simulation model.
- Adaptive measurement for the results: breeding new cultivars, or seeding late.

For Machine Learning modeling

- Different from other simulation, machine learning is pattern recognition or grouping.
- There are different ways for pattern recognition, but we evaluated six common used ones
 - Linear Discriminant Analysis (LDA),
 - Support Vector Machines (SVMs),
 - k-nearest neighbor (kNN),
 - Naïve Bayes (NB),
 - Recursive Partitioning and Regression (RPART), and
 - Random Forest (RF).

What have we found?

- Results showed:
 - Machine learnings are useful tools to predict flower and maturity dates, but no single algorithm outperformed others over all data set.
 - LDA and SVMs are better than the other for the data used, but k-NN is the worst one for the data set.
 - More work is needed in AI crop yield modeling, such as deep learning, and application of past plant/soil knowledge in modeling.

Soil health research

- Soil health: The continued capacity of the soil to function as a vital living ecosystem that sustains plants, animals and human.)USDA-NRCS, 2012, Soil Renaissances, 2014).
- Soil quality: the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality, and promote plant and animal health. (Doran and Parkin, 1994).

Soil quality and soil health

- Even though the two concepts differ, the methods of evaluation are pretty similar, that is using tangible soil test parameters.
- pH, EC, organic matter content, CEC, etc.

Methods of evaluating soil quality/health in early studies (J. of Land Use Science, 2012:109-121)

- Land uses: CRP, agriculture, and forest
- DI = 100(Xi Xo)/Xo
- DI deterioration index of individual measurement;
- Xi mean of replicate of an analytical item in other land uses rather than natural condition;
- Xo mean of replicates of an analytical item in the baseline soil, which is natural forest soil in our study;

$ADI = \Sigma DI/N$

- ADI average of deterioration index of all measurements;
- N total number of analytical items.

W = 100 x DI $i / \sum_{i=1}^{n} DIi$

• W weight of individual DI in Σ DI multiplied by 100.

				a			
Analytical Item		Land Uses			Statistical Analysis		
	Arable	CRP	Forest	P	LSD (0.05)		
	soils	soils	soils				
Physical properties							
Bulk density (Mg m ⁻³)	0.67	0.73	0.82	0.15	NS		
Wet aggregate stability 6 mm (%)	19.5	26.9	24.5	0.06	6.3		
Chemical properties							
Organic matter							
Surface organic matter (Mg ha ⁻¹)	4.6	19.4	290.5	< 0.0001	59.5		
Organic C in mineral soil (g kg ⁻¹	60.4	49.4	42.5	0.035	13.4		
soil)							
Total nutrients in mineral soil							
Total N (g kg ⁻¹ soil)	0.32	0.25	0.19	0.0073	0.07		
C:N ratio	18.9	19.8	22.4				
Total P (g kg ⁻¹ soil)	0.082	0.068	0.056	0.0032	0.014		
pH	5.3	5.4	5.3	0.63	NS		
EC (dS/m)	0.13	0.11	0.10	0.66	NS		
CEC (cmole _c kg^{-1} soil)	25.1	18.0	17.9	0.01	5.0		
Mineral N							
NO_3^N (mg kg ⁻¹ soil)	0.8	0.1	< 0.1	NS	NS		
NH_4^+ - N (mg kg ⁻¹ soil)	5.8	2.6	0.5	< 0.001	1.8		
Melhich-3 extractable ions							
P (mg kg ⁻¹ soil)	40	10	4	0.0002	16		
K (mg kg ⁻¹ soil)	117	126	76	0.0014	26		
Na (mg kg ⁻¹ soil)	17	12	17	0.078	5		
Ca (mg kg ⁻¹ soil)	2170	1295	1175	0.0004	475		
Mg (mg kg ⁻¹ soil)	290	176	188	0.0005	55		
Zn (mg kg ⁻¹ soil)	5	4	2	0.0002	1		
$Cu (mg kg^{-1} soil)$	2	2	2	0.47	<1		
Fe (mg kg ⁻¹ soil)	541	555	596	0.02	39		
$Mn (mg kg^{-1} soil)$	16	9	17	0.03	6		
Biological properties							
Microbial C (mg C/kg soil)	119.5	171.4	98.2	0.028	53.6		
Microbial N	21.7	21.9	9.4	< 0.001	5.1		
Microbial C:N ratio	5.5	7.8	10.4		1		

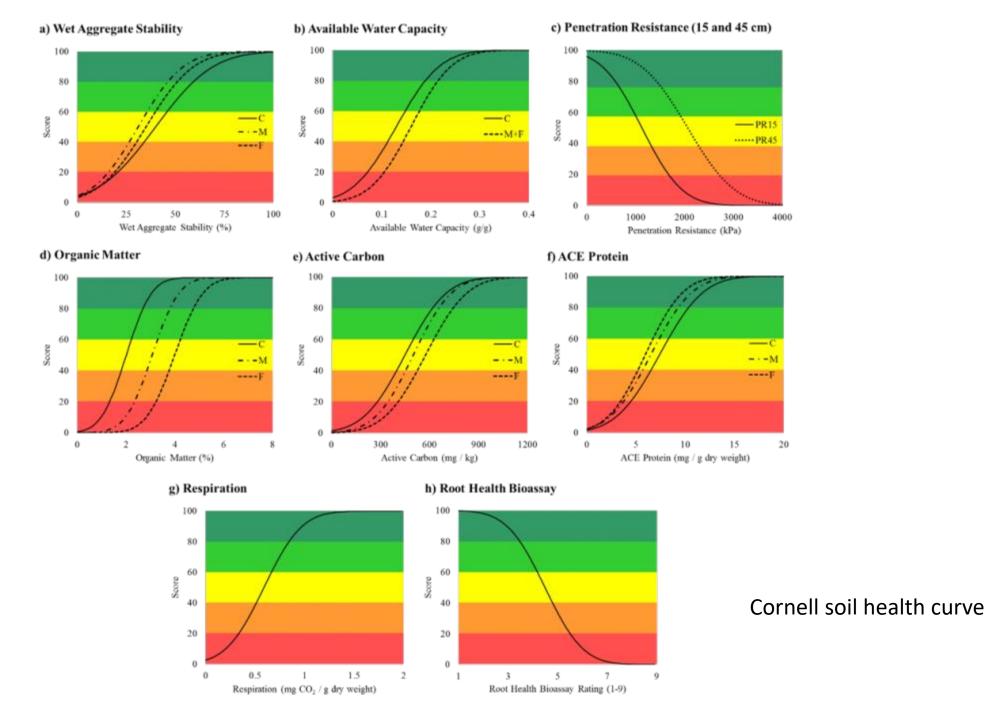
Soil physical, chemical, and biological properties from different land uses in central Alaska.

Deterioration index (DI, %) of CRP and agricultural soils, and contribution (weight) of each soil parameter to total DI.

Analytical		CRP	soil		Agricultural soil			
items	DI	W1	W2	W3	DI	W1	W2	W3
Surface OM	-63.6	-4.1	-22.6		-98.2	-3.7	-21.3	
Total C	23.8	1.5	8.4	6.9	52.7	2.0	11.4	9.4
Total N	42.4	2.7	15.5	12.3	78.5	2.9	17.0	14.3
Total P	23.3	1.5	8.3	6.8	48.5	1.8	10.5	8.7
M3-P	251.8	16.1			1094.3	40.8		
М3-К	90.9	5.7	31.9	26.2	76.3	2.8	16.6	13.6
Min-N	318.7	20.3			588.5	21.9		
Min-N released	715.4	45.6			541.2	20.2		
Micro. N	47.5	3.0	16.8	13.7	112.9	4.2	24.5	20.2
Micro. C	122.1	7.8	43.3	35.3	132.2	4.9	28.7	23.6
CEC	-3.6	-0.2	-1.3	-1.05	58.7	2.2	12.7	10.5
Sum (Σ DI) (1)	1567.9	100			2685.6	100		
Average (ADI) (1)	142.5	7.7			244.1	7.7		
Sum (Σ DI) (2)	282.0		100		461.6		100	
Average (ADI) (2)	35.1		12.5		57.7		12.5	
Sum (Σ DI) (3)	345.6			100	559.8			100
Average (ADI) (3)	49.4			14.3	80.0			14.3

W1 - weight of the total of each analytical item;

W2– weight of each analytical item in summation of DI excluding M3-P and Min-N, Min-N released;


W3 - weight of each analytical items in summation of DI excluding M3-P, Min-N, Min-N released, and Surface OM.

I don't know much about birds but I can easily identify the husband in this picture

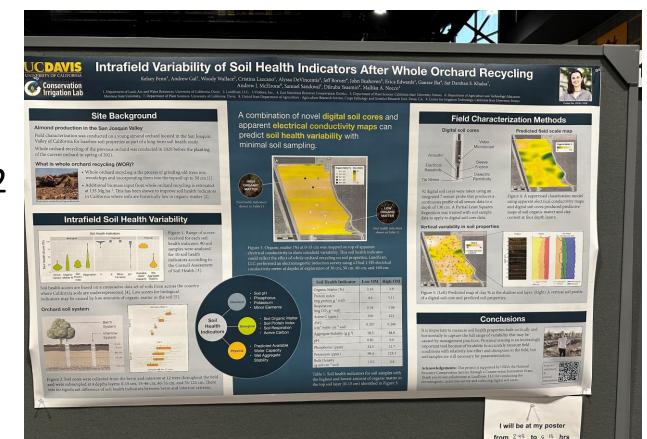
Cornell approach

- Based on the large quantity of data of the past so that optimal range of soil scores can be found. (Cornell' soil health score curve), more is better, less is better, optimal is better.
- Crop/management/regional specific?

What are needed for developing curves

- Large amount of past experiment data.
- Based on which, database development is needed.
- For Alaska, systematic agriculture related research started in 1970s, data are scattered and need to be collected.
- Therefore, development of curve is very preliminary.

Soil health is also crop specific


- Crop differences dictate soil health indicators, it has reported by numerous research papers.
 - DuPont ST, Kalcsits L, Kogan C (2021) Soil health indicators for Central Washington orchards. PLoS ONE 16(10): e0258991. <u>https://doi.org/10.1371/journal.pone.0258991</u>)
 - Soil quality index for cacao cropping systems, 2018. Quintino Araujo, et al. Archives of Agronomy and Soil Science, <u>https://doi.org/10.1080/03650340.2018.1467005</u>

Issues for soil health

• Scientific study to sustain soil productivity vs. commercial indicators for land prices (Development in agricultural soil quality and health: reflections by the research committee on soil organic matter management, MM Wander et al. 2019 Frontier in

Environmental Science, 7:109)

• Heterogeneity issues, poster from AGU Chicago, Dec. 11-16, 2022

Current research in soil health in Alaska

- Conduct long term field experiment,
 - Example of cover crop trial started in 2016 with 1-, 2- and 3-years rotations followed by potato.
- Do multiple soil analysis in order to develop minimum datasets, and build database.
 - Soil samples were analyzed in four different labs, including routine, soil health tool, Haney test, biological test, USDA-NRCS lab test.
- Relating test results with potato yield.
- Developing minimum data set as soil health indicators, this is an ongoing process.

Conclusion remarks

- Al technology is powerful, yet algorithm improvements for predicting crop growth are still needed.
- Soil health indicators are site and crop specific.